Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/knowledge_accumulator/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Knowledge Accumulator | Telegram Webview: knowledge_accumulator/36 -
Telegram Group & Telegram Channel
AlphaStar [2019] - мы упёрлись в лимит self-play learning?

С одной стороны, перед нами романтичная история о том, как Oriol Vinyals, будучи в юности крутым Starcraft-игроком, стал ML-исследователем и через полтора десятка лет изобрёл первую Grandmaster-level-систему для Starcraft. В этом подкасте у Lex Fridman он рассказывает много интересного об этом проекте, советую интересующимся.

С другой стороны, при переходе на такой уровень сложности среды мы начинаем видеть пределы такого метода обучения, который используется здесь (он похож на AlphaZero):

1) Без использования человеческих знаний и данных это не работает.
В отличие от Go, в Starcraft вы не можете обучить сильный алгоритм, плавно меняя вашу стратегию, начиная с рандомной. В Go вы можете начать из рандома, потом играть лучше рандома, потом ещё лучше и так далее. В Starcraft вы сразу же натыкаетесь на локальный максимум, в котором вы берёте всех своих стартовых юнитов и идёте бить морду противнику, а не строить базу.

2) Количество данных, которое тут требуется, безумно. Увеличение размерности печально влияет на способность алгоритмов обучаться. Тут мы и видим проблему низкого интеллекта таких систем - они не могут использовать данные так же эффективно, как это делает человек.

В общем, применение прикольное, но технологии у нас пока ещё совсем слабенькие.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/36
Create:
Last Update:

AlphaStar [2019] - мы упёрлись в лимит self-play learning?

С одной стороны, перед нами романтичная история о том, как Oriol Vinyals, будучи в юности крутым Starcraft-игроком, стал ML-исследователем и через полтора десятка лет изобрёл первую Grandmaster-level-систему для Starcraft. В этом подкасте у Lex Fridman он рассказывает много интересного об этом проекте, советую интересующимся.

С другой стороны, при переходе на такой уровень сложности среды мы начинаем видеть пределы такого метода обучения, который используется здесь (он похож на AlphaZero):

1) Без использования человеческих знаний и данных это не работает.
В отличие от Go, в Starcraft вы не можете обучить сильный алгоритм, плавно меняя вашу стратегию, начиная с рандомной. В Go вы можете начать из рандома, потом играть лучше рандома, потом ещё лучше и так далее. В Starcraft вы сразу же натыкаетесь на локальный максимум, в котором вы берёте всех своих стартовых юнитов и идёте бить морду противнику, а не строить базу.

2) Количество данных, которое тут требуется, безумно. Увеличение размерности печально влияет на способность алгоритмов обучаться. Тут мы и видим проблему низкого интеллекта таких систем - они не могут использовать данные так же эффективно, как это делает человек.

В общем, применение прикольное, но технологии у нас пока ещё совсем слабенькие.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/36

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Telegram is riding high, adding tens of million of users this year. Now the bill is coming due.Telegram is one of the few significant social-media challengers to Facebook Inc., FB -1.90% on a trajectory toward one billion users active each month by the end of 2022, up from roughly 550 million today.

The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.

Knowledge Accumulator from nl


Telegram Knowledge Accumulator
FROM USA